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Abstraet A twpdimensional molecular dynamics model is int-Juced in order to obtain a better 
understanding of interface amorphizalion. We sm from a monodisperse system of particles 
arranged on a perfect lwodimensional triangular lattice, which is divided into two separate 
regions. In one of lhese regions lhe particle size is uniformly reduced. while in the other it is 
enlarged, preserving the total system ‘volume’. Using a whole wealth of diagnostic tools, and 
visualizations of the particle distributions, a clear distinction between lhe bulk and the interface 
disordering transition emerges. Several interesting phenomena. such as the formation of defects, 
hysteresis of the fransilion, single-layer displacement and grain boundary development in the 
vicinity of the interface. show up in our simulations. 

1. Introduction 

It is well known that interest in the physics of interfaces has increased during the last decade. 
Multilayers, thin films and surfaces have been studied experimentally, theoretically and by 
means of numerical simulations. The cause for this interest is the vast number of novel 
and exciting properties that these systems exhibit. Due to two factors, their effective low 
dimensionality-the relevant physics of an interface is essentially two-dimensional (2D)- 
and the availability of superlattices with unusually large lattice parameters, experimentalists 
have found a rich new world of electronic and magnetic properties, which in the past was 
restricted only to theoretical fancy [I]. The giant magnetoresistance of metallic superlattices, 
such as F 4 r  [Z], discovered a few years ago, is a good example. 

However, in shaping such systems, structural considerations have to be taken into 
account. For example, depending on the types of atom present at either side of the interface, 
it can adopt an ordered structure or an amorphous configuration [3]. This spatial distribution 
of atoms has important implications for their electronic and magnetic properties, and for 
their technological applications. 

In a recent paper Bocquet et al [4] using molecular dynamics (MD) at constant 
temperature, obtained a first-order phase transition in a ZD substitutional binary alloy. 
Following a closely related procedure we cany out an MD study to investigate the order- 
disorder transition of a simple 2D system with an interface, whose results we report in this 
contribution. 

Our system, which is represented in figure 1, can be described as follows: a large number 
of discs, regularly arranged on an area bounded by a hexagon and subject to periodic 
boundary conditions, interact via a repulsive potential. The existence of an interface is 
induced by slowly increasing the atomic diameter of a cluster of discs, while reducing the 
size of the rest, preserving the total ‘volume’ of the system. In doing so we simulate, via 
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Figure 1. Staning configurntion (T = 0 and A = 1) of the N = 108-padcle system. The 
hexagon, which mntains 41 empty and 61 filled discs, is repeated periodically to generate the 
system. Later on the filled (empty) discs x e  allowed to decrease (increare) in size. 

MD, the time evolution of the system, while keeping constant the volume, the average atomic 
diameter (system size) and the temperature. The change in diameter of the discs has to be 
camied through in steps small enough to guarantee, as far as it is feasible with presently 
available computational resources, that the system is always in quasi-static thermodynamic 
equilibrium. 

As the above described process is carried through we evaluate several order parameters, 
that allow us to probe and characterize the degree of order of the system, and in particular 
of the interface. This way we find the critical atomic size ratio that generates a phase 
transition, from the initially ordered crystal, to a disordered structure with an amorphous 
interface. The procedure just described is canied out for several different configurations 
and temperatures. 

This paper is organized as follows. In section 2 we specify analytically the model and 
the dynamics we have employed to simulate its time evolution. Section 3 is devoted to the 
definition and discussion of the order parameters used for the diagnostics. In section 4 we 
provide and analyse the results obtained in our computations. The conclusions are finally 
presented in section 5. 

2. Model 

Following Bocquet eta1 [4] we consider a 2 D  model, in which a fixed number of 'soft discs' 
interact through a purely repulsive pair potential, given by 

v, = E (?) '* 
where E sets the energy scale and r is the distance between centres of a pair of interacting 
discs. ua6 is the distance between two discs in contact, and is defined by 

OW@ = +up) 1 < cr. p < 2. (2.2) 

In our computations we start with a hexagon that accommodates N close packed discs 
arranged on a perfect biangular lattice. Next the system is divided into two regions, as 
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illustrated in figure 1. In one of the regions the diameter of NI of the discs is dilated, while 
at the same time the rest of them (Nz  s N - N I )  shrink, keeping constant a mean atomic 
diameter U to be defined later on. 

The sue ratio of the two species of particle in the system is denoted by the parameter 

and the concentration of each of the species is given by xi = NJN. 
A dimensionless coupling constant y is now introduced as 

116 
y = g (&) 

Here NoZfC2 and kgTIe  play the role of reduced number density and temperature, 
respectively. The size ratio A, the concentrations xi and the non-dimensional coupling 
constant y ,  fully specify the equilibrium thermodynamic properties of the system [5]. 

As mentioned above, our simuIations were carried out starting with a monodisperse 
system, characterized by 1 = 1, and little by little reducing the size ratio to h < 1 values. 
In doing so conformal solution theory [6] is used, which allows to define the mean diameter 
U by the constraint 

For our simulations the natural MD time unit is 5 = m, where m is the mass 
of the particles, and the time step we adopted was At = 5 x 10-3s. All ow simulations 
were carried out for a constant number of each type of particle Ni; thus, the density also 
remained fixed. n e  temperature was held constant by means of the thermostat of Hoover 
et al [7] in the version due to Brown and Clarke [8]. Consequently, on the basis of the 
arguments given after (U), all of our numerical results correspond to a fixed value of y ,  
while h is the sole free parameter. 

As mentioned above, the reduction of the size ratio h was performed in a sequence of 
tiny steps. We adopted the value SA = followed by constant A stabilization periods 
of 400 time steps Af. After a transient stabilization period elapsed, the statistical averages 
reported below were taken over 2000A1, every Ah = 5006A. 

An exception to the above is made for the specific case of figure 7(a) and 7(b), 
where~after reducing A we also proceed to increase its value back to h = I, in order 
to evaluate hysteresis effects near the critical size ratio. In this case we allow the system to 
relax for 2000At after every modification SA, and we compute the order parameters every 
AA = 100Sh. 

3. Order parameters 

As the interface is created, by modification of the monodisperse ( h  = 1) initial condition, 
the system evolves from a perfect crystal towards a binary configuration with a certain 
degree of disorder, which eventually leads to a phase transition. As this develops, and in 
addition to the customary visualizations and phase diagrams, five types of order parameter 
are used in this paper to monitor and characterize the order-disorder transition [41. They 
are defined as follows: 
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(i) The structure factor, which is a measure of the translational order, 

where R, specifies the position of atom i and N is the total number of a tom in the system. 
Here and throughout (. . .) denotes the ensemble average. p~ is evaluated for a specific 
reciprocal lattice vector G of the triangular lattice. The structure factor becomes pc = 1 
for a perfectly ordered periodic lattice, and decreases as l/d% when complete disorder sets 
in. 

(ii) Another way to measure the degree of translational order is the mean square 
displacement (Ar )*, given by 

(3.2) 

where Rio specifies the lattice position of atom i. Thus, (AT )' is a measure of the 
displacement of the atoms from their zero-temperature equilibrium positions. 

(iii) The bond orientation order is probed through the Nelson-Halperin [9] order 
parameter 

(3.3) 

where ni is the number of  nearest neighbours of atom i and 0 ,  is the angle formed by the 
bonds of an (i. j )  pair of nearest neighbours. (Y) is unity for a perfect triangular crystal. 
and tends towards zero as the structure disorders locally. 

(iv) Along the same lines we computed the fraction f6 of atoms having exactly six 
neighbours, counting the number of particles within a cut-off radius r, lying midway between 
nearest and next-nearest lattice positions, and given by 

(3.4) 

This method is much easier and faster than using the VoronoY construction and has been 
shown to be equivalent to it within 1% at least for the dense fluid phase near freezing and 
in the solid phase [lo]. 

As the system consists of two well defined clusters, we compute separately for each 
one of them the order parameters presented above. This way p& denotes the p~ order 
parameter evaluated over the cluster of a tom of species i (i = I ,  2). The same is valid 
for the (AT)' order parameter. For the Nelson-Halperin [9] order parameter we make 
a distinction between three types of bond: (Ull) for bonds between type 1 atoms, (Yz) 
between type 2 atoms and (Yl2) for mixed bonds. The latter evaluates the degree of order 
at the interface between the two clusters. fi is evaluated over the cluster i, independently 
of the kind of neighbour the particle actually has. 

(v) The gij pair correlation functions where i and j ,  in this particular case, assume the 
values 1 and 2 to label the smaller and larger than average discs, respectively. Analytically 
it is defined by 
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where Q is the 'volume' (in our case actually the area) of the system. 

In addition to the above defined order parameters, the diagnostics are complemented 
with illustrative visualizations of averaged atomic position, pressure versus atomic size ratio 
h, and coupling constant y versus h phase diagrams. 

4. Numerical results 

In this section we report the results of our numerical computation, obtained following the 
scheme outlined above. Basically we adopted the value N = 108 for the number of particles 
in our system: however, some runs for a system of quadruple size, i.e. N = 432 were also 
performed to check on size effects. The latter number of particles essentially corresponds 
to the largest that can be handled with present day computers, within reasonable machine 
times. 

The choice of N is a non-trivial matter, since it has to be consistent with the boundary 
conditions imposed on the system. Tbe exterior hexagonal boundary is consistent with 
N = 108, but it severely restricts the choice. of N 1 ,  the number of particles in the smaller 
internal hexagon of figure 1, particularly if one demands that the concentrations xi N f .  
Actually, we have adopted N1 = 61, which implies XI E 0.5648. 

Figure 2. Order parameters versus size ratio h for a constant value of the coupling canmnl 
y = 1.64. (a) SVuchlR faaar p ~ ;  (b) mean q w e  displacement (AT )': (c) Nelson-Hal* 
order parameter (U) and (d) fraction of &oms having exactly six neighbours fa. 

In figure 2 we present plots of the structure factor p ~ ,  the mean square displacement 
(AT )*, the bond orientation parameter (Y) and the fraction of atoms having exactly six 
neighbours fs, versus the size ratio h. All of them correspond to y = 1.64. The four plots 
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provide consistent and complementary information on the behaviour of the system and the 
phase transition it undergoes. In fact, all of them show a sharp phase transition occurring 
in a narrow region around the critical value Ac = 0.835. 

The structure factor, plotted in figure 2(a), indicates that the interior smaller-diameter 
particles lose translational order at a faster rate than the exterior dilated-diameter ones. It is 
also apparent that a few metastable states are reached in the vicinity of the transition; their 
small number is certainly due to the relatively limited system size. These metastable states, 
and the A c 0.83 stable configurations, exhibit a degree of translational order which depends 
significantly on whether one considers the smaller- or larger-particle-diameter regions. 

The mean square displacement parameter, illustrated in figure 2(b), also provides a clear 
cut notion of what goes on, with a sharp discontinuity at the phase transition, and metastable 
states in its vicinity. However, the bond orientation parameter (figure 2(c)) evidences two 
special features: it is the only parameter in these figures which probes interfacial disorder, 
and it exhibits a qualitatively different behaviour from the rest. In fact, in the smaller-particle 
region the value of (*!I) remains quite constant, while both ('&) and (*I*) show a quite 
disparate alteration of their magnitude. The similar trends of (Y22) and ( Q I ~ )  break down 
below the transition, with the interfacial bond order showing a manifestly larger change 
(37% as compared with 6%). Possibly this large variation is the clearest indication of a 
qualitative change at the interface. This can easily be understood on the basis of a simple 
physical picture: the interior region shrinks preserving the hexagonal geometiy and, to a 
certain degree, so does the exterior region, but not the interface which suffers major strains 
in the adjustment process. This all seems to indicate that, after undergoing the disordering 
transition, the particles in the interior and exterior regions find a way to achieve local bulk 
order, but find it hard to adjust at the interface. 

The main features of the preceding figures are consistent with the behaviour of fi, 
displayed in figure 2(d). The unique characteristic of this orientational order parameter is 
the constant value it  adopts (f, = 1, independent of i) all the way to the phase transition 
which occurs at Ac 2 0.835. However, when compared with the rest of the order parameters, 
it suffers the smallest change (of only 7%) at the phase transition, if the metastable values 
of fi Z 0.9 are ignored. 

The pair correlation functions gll. g22 and g12 are plotted in figure 3(a), (b) and (c), 
respectively. Our first observation is that these plots are consistent with a phase transition 
around A E 0.837. Moreover, it is noticed that the peaks of gll correspond to a triangular 
lattice that has shrunk, while those of g u  correspond to the expected expanded lattice. It 
is also worth mentioning that, to a large extent, the structure is lost for A 

For our purposes the most interesting of the pair correlation functions is gr2. which 
provides an insight into the interfacial structure. In fact, before the bulk transition takes 
place, i.e. for A < 0.837, plenty of structure is observed, which is due to pairs of atoms 
belonging to different sets (interior and exterior), each of them with different distance 
parameters. This structure disappears below the phase transition, when a liquid-like 
structure pair correlation function seems to emerge, suggesting the presence of interfacial 
amorphization. 

Pictures are always quite eloquent. Thus, here and throughout, we provide images of 
the average particle position. Figure 4 portrays the particles just above A > A, (figure 4(a)), 
in the metastable region A Z A, (figure 4(b)), and just below A c Ac (figure 4(c)), the phase 
transition. While it is apparent that a degree of long- and short-range order is preserved 
as the system undergoes the transition, we observe that the latter gives rise to plenty of 
defects, especially in the neighbourhood of the interface. Moreover, the critical fluctuations 

0.836. 
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Figure 3. Pair correlation functions 8 0 )  just before (A = 0.837). and after (A = 0.833), the 
disordering msition. as a function of radial distance on the planer, in units of viangular laltice 
spacing. 

observed in figure 4b are quite remarkable. In addition, the simulations below A, verify that 
some local order is recovered, once the critical fluctuations near the transition are quenched. 

In figure 5 the pressure p versus size ratio A plot reinforces the notion of a sharp first 
phase transition. No trace of the presence of metastable states appears, thus hinting that 
these states are of nearly equal energy, since pressure and free energy differ only by a 
constant factor. 

General trends to illustrate the influence of the magnitude of the coupling constant are 
displayed in figure 6, by means of a phase diagram for the order-disorder transition in the 
A-y plane. It is observed that order emerges only when the coupling strength y > 1, but, 
after order sets in, it is stable practically up to the critical value A,. 

To better understand the transition, and to add a more dynamical point of view, we also 
investigated its hysteresis. In figure 7 we show results for the interfacial bond orientation 
order parameter &), obtained by first shrinking and then expanding the size ratio A. Of 
special interest is the re-crystallization process that is observed in figure 7(a) as A grows 
above 0.83. As expected, the re-crystallization trajectory is not as sharp as the disordering 
transition but, after the intermediate region 0.835 c A c 0.865 is crossed, the full magnitude 
of the order parameter is recovered. This indicates that the initial ordered configuration is 
fully regained. 

On the other hand, if the reduction of A is stopped at 0.83, as illustrated in figure 7(b), 
then the original value of (Q&. = 1) = 1) is recovered only asymptotically. This strongly 
suggests the presence of defects, even in the monodisperse h = 1 limit; to find out if this is 
the case we examine a snapshot of the average configuration (figure 7(c)) in this A = 1 limit. 
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Figure 4. Snapshots of the avenged particle positions 
(a) before (A = 0.837) e) just at (A = 0,836) and 
(c) below ( I  = 0.834) the disordeing transition. 

Figure 5. Pressure p .  in units of f d i N  (where d" is the triagular lauice spacing) v e n u  size 
ratio A. 

While most atoms are aligned and have six first-nearest neighbours, with 60" bond angles, a 
hole is present baning the system from recovering its full original symmetry. The existence 
of a hole implies a non-uniform increased density around it. Also due to the presence of the 
hole, there is an energy banier that has to be surmounted to recover the perfect symmetry 
configuration; so to say, the hole locks the particles in place, into a squeezed environment, 
without allowing the neighbours to occupy the void. Obviously, if this flawed system is 
subject to an annealing process the perfect original configuration is recovered. 
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Figure 6. Phase diagram for the orderdisorder transition in the 1-y plane. Notice the decreasing 
scale of both the .I and the y axis. 

A complementary understanding is obtained by the examination of figure 7(d), which 
provides a plot of pressure versus A. It should be noticed that pressure and Helmholtz 
free energy, in our case where the potential obeys a simple power law, differ only by a 
constant factor, and thus we will take them to be essentially equivalent. We observe that, for 
decreasing A, the transition is easily distinguished by a pressure (free energy) discontinuity. 
Subsequent minor changes in the order parameters are not perceived in the free energy plot, 
since they correspond to transitions between states of practically the same energy. On the 
contrary, for increasing A the curve is smooth, and a crossing with the decreasing trajectory 
occurs for A = 0.875, which signals the coexistence, in thermodynamic equilibrium, of 
the ordered and disordered phases. However, there is no transition from one to the other, 
since an energy barrier of unknown height separates them: thus, hysteresis is present in this 
first-order phase transition. 

This way, during our simulations, the system can adopt an energy-wise unfavourable 
metastable disordered configuration all the way up to the monodisperse limit A = 1, due to 
the fact that the energy barrier cannot be surmounted within the amount of time available for 
computation. This points towards two shortcomings of these simulations: (i) the short time 
that is feasible to carry them out; and (ii) the finite size of the system. It is expected that 
the energy barrier associated with a single vacancy will become smaller as the size of the 
sample increases, thus reducing the likelihood for a vacancy to survive in a homogeneous 
system. 

Finally, we also have tried to assess the effects of finite size through an example: 
enlarging the system from 108 to 432 particles. In figure 8 we plot versus A, the bond 
orientation order parameter (qij) which is the most sensitive one to interfacial disorder, 
and which ought to be compared with figure Z(c). While the same qualitative behaviour 
is observed in these two figures, the transition is slightly displaced, from A 2 0.835 in 
figure 2(c), to A E 0.860 in the present case. We ascribe the difference to the change in 
concentration of smaller particles, from XI = 61/108 "= 0.5648, to XI = 215/432 "= 0.4977 
(we recall the comment, made in relation to figure 1, pointing out the restriction imposed 
by geometry on the choice of N I ,  the number of particles inside the interior hexagon). In 
general, it is to be expected that the smaller the value of X I ,  the more unstable the system 
is, and the sooner the transition takes place. 

Another quantitative difference is the extents of the discontinuity of (W1,) and (WZZ), 
which were of between 10% and 20% for the 108-particle system, and are of less than 5% 
now, for the 432-particle system. This is a size effect, since now the number of atoms 
barely affected by the interface is much larger and they are less influenced by the transition. 
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Figure 7. The hysteresis of the process. (a) Inlerfacial bond order parameter (alp) For A 
shrinking to 0.1 (filled circles) and then expanding back to unity (opn U’iangles), (b) as (a) but 
slopping at A = 0.83 (filled circles) and expanding back to unity (open triangles), (c) snapshot 
of average panicle positions after process (b). for A = 1; (d) pressure p (free energy) versus A, 
corresponding to lhe process illustnted in @). 

Actually, in the infinite-size limit ( W I I )  and ( W ~ Z )  should be continuous at the transition, 
which only would be reflected in the (WIZ)  order parameter. In fact, the latter retains the 
magnitude of the discontinuity, which provides us with reassurance on the soundness of our 
inferences. 

In figure 9 we provide a picture of the particle positions for A = 0.855, just after the 
transition. As expected, the richness of defects is now quite apparent. While before, in 
figure 7(c), displaced and five nearest-neighbour atoms could be seen, we now observe, in 
addition to those defects, the displacement of single layers, and the emergence of a grain 
boundary at the lower interface region. 

5. Summary and conclusion 

In this contribution we have used the molecular dynamics (MD) model introduced by Bocquet 
et al [4] to study the bulk amorphization process, in order to shed light on interface 
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Figure 8. Bond orientation order parameter (Qji) "emus A, for a 432-particle system. This plot 
is to be conmted with figure Z(c). 

Figure 9. Snapshot of the larger (N = 432) system. for A = 0.855, which illusvates the nalure 
and the richness of lhe defect structure. 

amorphization. To do so we have shrunk (or eventually enlarged) the radii of the particles 
in a region of space, bound by an hexagonal border. This differs from [4] where the particle 
radii were shrunk or enlarged at random. On this basis we have been able to show that 
the discontinuous transition from a 2D crystal to an amorphous solid has special and quite 
interesting characteristics at the interface that we create in our simulations. 

In fact, the disordering process is more marked at the interface, especially when the 
bond orientation order parameter (Yiz) and the number of nearest neighbours fi are used 
as visualization criteria. Moreover, layer displacements, a high density of defects and 
precursors of grain boundary nucleation, in the vicinity of the interface, are also observed 
in our simulations. These phenomena are quite different from, and should not be confused 
with, the melting transition which occurs at higher temperatures. 

Due to the relatively small number of particles in the system, some energetically 
unfavourable metastable states are generated: moreover, they sometimes induce hysteretic 
effects. These states cannot be eliminated within available computing times, but they can 
be qualitatively understood through the examination of pictures of the particle distribution 
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in our system. 
In summary, we have been able to produce a simple MD model which allows us to 

obtain some insight into the interface amorphization phenomenon, hinting to classical size 
effects as the main driving mechanism. 
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